Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Res ; 27(1): 117, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978399

RESUMO

BACKGROUND: There is a great clinical need and it remains a challenge to develop artificial soft tissue constructs that can mimic the biomechanical properties and bioactivity of natural tissue. This is partly due to the lack of suitable biomaterials. Hydrogels made from human placenta offer high bioactivity and represent a potential solution to create animal-free 3D bioprinting systems that are both sustainable and acceptable, as placenta is widely considered medical waste. A combination with silk and gelatin polymers can bridge the biomechanical limitations of human placenta chorion extracellular matrix hydrogels (hpcECM) while maintaining their excellent bioactivity. METHOD: In this study, silk fibroin (SF) and tyramine-substituted gelatin (G-TA) were enzymatically crosslinked with human placental extracellular matrix (hpcECM) to produce silk-gelatin-ECM composite hydrogels (SGE) with tunable mechanical properties, preserved elasticity, and bioactive functions. The SGE composite hydrogels were characterized in terms of gelation kinetics, protein folding, and bioactivity. The cyto- and biocompatibility of the SGE composite was determined by in vitro cell culture and subcutaneous implantation in a rat model, respectively. The most cell-supportive SGE formulation was then used for 3-dimensional (3D) bioprinting that induced chemical crosslinking during extrusion. CONCLUSION: Addition of G-TA improved the mechanical properties of the SGE composite hydrogels and inhibited crystallization and subsequent stiffening of SF for up to one month. SGE hydrogels exhibit improved and tunable biomechanical properties and high bioactivity for encapsulated cells. In addition, its use as a bioink for 3D bioprinting with free reversible embedding of suspended hydrogels (FRESH) has been validated, opening the possibility to fabricate highly complex scaffolds for artificial soft tissue constructs with natural biomechanics in future.

2.
Mater Today Bio ; 14: 100262, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35509865

RESUMO

The endothelium plays an important regulatory role for cardiovascular homeostasis. Rapid endothelialization of small diameter vascular grafts (SDVGs) is crucial to ensure long-term patency. Here, we assessed a human placental chorionic extracellular matrix hydrogel (hpcECM-gel) as coating material and compared it to human fibronectin in-vitro. hpcECM-gels were produced from placental chorion by decellularization and enzymatic digestion. Human umbilical vein endothelial cells (HUVECs) were seeded to non-, fibronectin- or hpcECM-gel-coated expanded polytetrafluorethylene (ePTFE) SDVGs. Coating efficiency as well as endothelial cell proliferation, migration and adhesion studies on grafts were performed. hpcECM-gel depicted high collagen and glycosaminoglycan content and neglectable DNA amounts. Laminin and fibronectin were both retained in the hpcECM-gel after the decellularization process. HUVEC as well as endothelial progenitor cell attachment were both significantly enhanced on hpcECM-gel coated grafts. HUVECs seeded to hpcECM-gel depicted significantly higher platelet endothelial cell adhesion molecule-1 (PECAM-1) expression in the perinuclear region. Cell retention to flow was enhanced on fibronectin and hpcECM-gel coated grafts. Since hpcECM-gel induced a significantly higher endothelial cell adhesion to ePTFE than fibronectin, it represents a possible alternative for SDVG modification to improve endothelialization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...